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An Investigation of Alternative Algorithms for Singularity–Free Estimation of Rigid 
Body Orientation from Earth Gravity and Magnetic Field Measurements 

R.B. McGhee, E.R. Bachmann, X.P. Yun, and M.J. Zyda 
Naval Postgraduate School 

Monterey, California 
93943-5118 USA 

1. Introduction 
For millennia, it has been recognized that the orientation of a rigid body relative to 

the local vertical (gravity vector) can be specified by two angles. Since the Nineteenth 
Century, these angles have commonly been called “Euler” angles, usually designated by 
the reserved words “bank” (or “roll”) and “elevation” (or “pitch”) angles. Also since 
ancient times, it has been understood that a third angle, representing rotation about a 
vertical axis and usually called “azimuth” (or “heading”), is needed to completely specify 
rigid body orientation. This angle is by convention referenced to the local north vector 
and determined by sightings on the North Star or by suitably corrected compass readings.  

With the invention and rapid proliferation of aircraft early in the Twentieth Century, 
some problems with the above approach to rigid body orientation soon became evident. 
Specifically, although vertical gyros were introduced to maintain a stable “artificial 
horizon” for measurement of aircraft elevation (or “climb”) and bank angles, heading is 
undefined for an aircraft in a vertical orientation. While pilots are able to deal with such a 
“singularity” by simply ignoring instrument readings for a brief period of time while 
passing through the vertical, attempts to create ground based “flight simulators” 
encountered more fundamental problems with the use of Euler angles for orientation. In 
particular, it is now well understood that the non-orthogonal “body rotation rate to Euler 
angle rate” transformation matrix is singular in a vertical orientation (McGhee et al., 
2000b). This can result in erratic results or even floating point overflow conditions in 
digital simulation of flight dynamics. Fortunately, this situation is mathematical in nature, 
and not physical. Thus, by adopting a quaternion representation of orientation in place of 
Euler angles, this singularity problem is completely eliminated while computational 
complexity is at the same time greatly reduced (Cooke et al., 1992). 

While the advantages of quaternions over Euler angles for non-singular orientation 
representation are now generally appreciated with regard to computer simulation of rigid 
body dynamics, this is not the case in orientation sensing. Specifically, while low cost 
and effective orientation sensors based on three-axis magnetometers and three-axis 
accelerometers are now available, most “electronic compasses” and related systems still 
use computations based on Euler angles. (Frey, 1996; Yun et al., 1999; Precision 
Navigation, 1995;  Foxlin, 1996) and are therefore unable to track orientation through 
vertical motion. While this is not important in applications such as ship and land vehicle 
navigation, it impacts severely attempts to use such sensors in other important areas such 
as aerial vehicle navigation (Gebre-Egziabher et al., 2000) and human limb segment 
motion tracking (McGhee et al, 2000a; Bachmann, 2000). Consequently, the purpose of 
this paper is to present a number of alternative algorithms for singularity-free orientation 
estimation based on three-axis sensing of Earth gravitational and magnetic fields. Both 
static and dynamic estimation based on such sourceless sensing are considered, and the 
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relative advantages and disadvantages of several algorithms are presented by means of 
mathematical analysis and computer simulation results. 

2. Mathematical Formulation of Problem 
In the absence of linear acceleration, an orthogonal triad of accelerometers senses the 

local gravity vector. Specifically, if  is the (non zero) orientation quaternion associated 
with a rigid body,  is a constant unit vector (quaternion with zero first element) 
pointing in the local down direction, and 

q
m

gy  is the corresponding unit vector determined 
from the outputs of an accelerometer triad, then, assuming accelerometer axes coincide 
with body axes and that there is no error in the accelerometer outputs, it follows that 
(McGhee et al., 2000a): 

 ( ) ( )1
gy q Ve q m q−= ⊗ ⊗  (1) 

In this expression, Ve  designates the vector part (last three components) of a quaternion 
and  is the quaternion product. Likewise, if ⊗ ny  is the output of a perfect three-axis 
magnetometer, and  is a unit vector aligned with the local Earth magnetic field vector, 
then 

n

 ( ) ( )1
ny q Ve q n q−= ⊗ ⊗  (2) 

With these definitions, the computed measurement vector, ( )y q , can be defined as the 
6x1 column vector 

 ( ) ( ) ( )( ),
T

g ny q y q y q=  (3) 

where the comma denotes concatenation. If the actual measurement vector, , is defined 
as the transpose of the concatenation of the unit row vector obtained by normalizing the 
real physical output of an accelerometer triad and the corresponding unit vector from a 
magnetometer triad, then the modeling error vector, 

0y

( )qε , is defined by 

 ( ) ( )0q y y qε = −  (4) 

The problem of obtaining an estimated orientation quaternion, , from the measurement 
vector, , can thus be viewed as the mathematical problem of finding a  that in some 
sense minimizes . 

q̂

0y q

( )qε

3. Least Squares Estimation and Gauss-Newton Iteration 
Examination of Eq. (4) reveals that this relationship amounts to six equations 

involving the four unknown components of , the value of q  that minimizes q̂ ε . This 
observation reveals two difficulties. First of all, if one were to simply equate  to a 
6x1 zero vector, the corresponding value for q  is overspecified since, in general, four 
unknowns can satisfy only four equations. The usual way to address this kind of problem 

(q)ε
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is to define a scalar criterion function on ε  that is minimized by . The most common 
choice for such a function is the squared error criterion function, 

q̂

( )Tqε ε=

q

∂
=

1S X−

S

(=

(q h

 ( ) ( ) ( ) 2
h q q qε=  (5) 

In the absence of measurement and modeling errors,  will reduce  to zero, but in 
any practical case, the minimum value for this function will be a positive number. Such a 
minimizing  is called the least squares estimate for the true (unknown) value of q  
(McGhee, 1967). 

q̂ ( )h q

q

While the above approach solves the overspecification problem, there is a hidden 
underspecification problem associated with minimizing Eq. (5). Specifically, if  is a 
minimizing value for , then as shown in Appendix B, 

ˆq q=
q ˆq α=  is also a minimizing 

value, where α  is any non-zero scalar. This means that any attempt to find  through 
iterative linearization of  will involve a singular matrix. It is important to realize 
that this is not a theoretical problem, but rather a basic fact relating to the most common 
way of solving equations such as Eq. (5), called Gauss-Newton iteration. Specifically, let 
the 6 x 4 matrix 

q̂
( )y q

X  be defined by: 

 
( )i

ij
j

y q
X

q∂
 (6) 

Then, the Gauss-Newton iteration equation that computes the change in  needed to 
minimize is (McGhee et al., 2000a): 

q
( )h q

 ( )1T Tq X X X qε
−

 ∆ =    (7) 

 ( )T qε=  (8) 

However, because X  is not of full rank, the regression matrix, , is singular and q∆  
cannot in fact be determined from this equation. 
One way to deal with the non-uniqueness of orientation quaternions is to restrict them to 
be unit quaternions. The most obvious way to do this is to add to ( )h q  some function, 

, which is continuous and differentiable for all  and positive for all values of q  
other than unit quaternions. One such suitable function is 
( )g q q

 ( ) )22 1g q q −  (9) 

Evidently, if  
 ( ) ) ( )q g qϕ = +  (10) 

then minimizing  yields a  that is a unique unit quaternion except for a sign 

ambiguity. That is, if the unit quaternion  minimizes 
( )qϕ q̂

q̂ ( )qϕ , then so does q̂− . 
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Fortunately, since  and −  accomplish the same rotation, this degree of non-
uniqueness does not disturb numerical minimization techniques such as Gauss-Newton 
iteration (McGhee et al., 2000a). Thus, utilization of Eq. (10) provides one means of 
obtaining a non-singular estimate of the orientation quaternion for a rigid body from 
measurements of Earth gravity and magnetic field vectors. While this is the most obvious 
way to solve this problem, the authors have found better solutions as described in the 
following paragraphs, and therefore do not advocate this “naïve” method. That is, in the 
remainder of this paper, the function 

q q

( )g q  in Eq. (10) will be omitted and restriction of 
 to unit vectors will be accomplished by more effective means. q̂

= −

q +

i m⊗ q m⊗

m⊗ q m+ ⊗=

q m+ ⊗= ⊗

q̂

4. Modified Computed Measurement Function 
An alternative approach to dealing with the above singularity problem is to redefine 

the computed measurement functions given by Eq. (1) and (2) by replacing the inverse of 
q by its conjugate defined as (McGhee et al., 2000a): 

 ( )*
0 1 2q q q q q− −  (11) 3

With this substitution, using the product rule of differential calculus, it follows that 
(Henault, 1997; McGhee et al., 2000a) 

 ( *

0

,
Ty m q m n q q n

q
∂

= ⊗ ⊗ ⊗ + ⊗
∂

 (12) )*

 ( )*

1

,
Ty q i i n q q n i

q
∂

= − ⊗ + ⊗ − ⊗ ⊗ + ⊗ ⊗
∂

 (13) *

 ( )*

2

,
Ty *j q j j n q q n j

q
∂

− ⊗ ⊗ − ⊗ ⊗ + ⊗ ⊗
∂

 (14) 

 ( )*

3

,
Ty k m q k k n q q n k

q
∂

− ⊗ ⊗ − ⊗ ⊗ + ⊗ ⊗
∂

 (15) *

q

 In these equations, the symbols i, j, and k are unit vectors (in quaternion form) 
pointing in the local Earth-fixed x, y, and z directions (usually, north, east, and down, 
respectively). Also, it is to be understood that only the vector part of each triple 
quaternion product is used. 

Of course, these results are different (and much simpler) than those obtained from 
differentiation of Eq. (1) and (2) (McGhee, et al., 2000a). The question is, how is this 
change justified? The answer is that providing that q is a unit quaternion, its inverse is 
just its conjugate. Thus, if the iterative calculation of  involves normalization to a unit 
quaternion on every cycle (by dividing q

q̂
+ ∆  by its magnitude), then the above 

simplified derivatives should function correctly in Eq. (8), and should result in rapid 
convergence to a correct value for , without any singularity problems. Simulation 
experiments have shown this to be true (Henault, 1997; McGhee et al., 2000a). Moreover, 

 4



these equations have been used with good results in an innovative real-time human 
motion tracking system (Bachmann, 2000; Bachmann et al., 2001). 

5. Reduced Order Estimation  
Although the authors believe that the use of Eq. (12)-(15) in (Henault, 1997) 

represents the first effective means found for singularity-free “sourceless” rigid body 
attitude estimation, we recognize that, in fact, the components of a unit quaternion are not 
independent variables. Rather, up to a sign ambiguity, , the real part of a unit 
quaternion, can be determined from 

0q

( )1 2 3q q q , the vector part of the quaternion, from 
the relation: 

 2 2 2 2
0 1 2 3 1q q q q+ + + =  (16) 

This being the case, there should be a 3x3 regression matrix version of the Gauss-
Newton iteration relation of Eq. (8). In (McGhee et al., 2000a), we were able to obtain 
this problem reduction by observing that if  and q̂ q̂ q+ ∆  are both unit vectors, then in 
the limit, as  approaches zero, it must be orthogonal to . Motivated by this 
observation, we derived the orthogonal quaternion theorem that states that if 

q∆ q
p  is a 

quaternion orthogonal to another quaternion, q , then 
 p q v= ⊗  (17) 

where v  is the unique vector  
 ( ) 1

1 2 30v v v v q−= = p⊗  (18) 

Thus, determining a value for v that minimizes ( )qϕ  determines  (McGhee et al., 
2000a). 

q̂

While the results of combining Eq. (12)-(15) with the above problem reduction 
produced the best algorithm we have actually used to date in physical experiments 
(Bachmann, 2000), we have recently become aware of a better approach to the 3 x 3 
problem formulation that leads both to simpler equations and to deeper mathematical 
insights (Gebre-Egziabher et al., 2000). Specifically, from Appendix B, let  be the 
incremental rotation quaternion given by: 

rq

 ( ) ( )1 2 31rq r r r= = 1, r  (19) 

Evidently, as the rotation vector r  approaches zero, then  approaches a unit 
quaternion. Thus, if a value is found for  that reduces the squared error criterion 
function, , it follows that 

rq

rq
( )qϕ

 ˆ ˆnew old rq q q= ⊗  (20) 

and that, in the limit, as  approaches zero,  will also be a unit quaternion. More 
practically, the results of Eq. (20) should be normalized to a unit quaternion after every 

r ˆnewq
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iterative application of this equation (McGhee et al., 2000a), thereby removing any 
limitations on the magnitude of r . 

olq

X

)

Eq. (20) can be written in additive form by noting that 
 ( ) ( )1 2 3ˆ ˆ ˆ ˆ1 1new old d oldq q q r r r q∆ = − = ⊗ − ⊗  (21) 0 0 0

 ( )1 2 3ˆ 0oldq r r= ⊗ r

)

 (22) 

where  
 (1

ˆT T T
oldr X X X qε

−
 =    (23) 

and, from Appendix A, X  is the 6x3 reduced order matrix: 

 

3 2

3 1

2 1

6 5

6 4

5 4

0
0

0
2

0
0

0

y y
y y
y y

y y
y y
y y

− 
 − 
 −

=  − 
 −
 
−  

 (24) 

To understand these results, it is important to recognize that the elements of X  are 
just the components of the computed measurement vector, ( )ˆoldy q , given by Eq. (1)-(3). 
Since this vector is needed in every cycle of Gauss-Newton iteration to compute the 
modeling error vector, , given by Eq. (4), it follows that the above value for ( ˆoldqε X  is 

“free” since all terms are known once ( )ˆoldqε  has been computed. While the numerical 
value for X  obtained in this way is identical to the value obtained using the orthogonal 
quaternion theorem (McGhee et al., 2000a), Eq. (24) provides an order of magnitude 
reduction in the amount of computation needed to obtain X , and is therefore of 
significant importance in applying Gauss-Newton iteration in practical real-time 
orientation tracking systems.  

6. Convergence and Accuracy of Gauss Newton Iteration 
 While necessary and sufficient conditions for local convergence of Gauss-Newton 
iteration are known, these require evaluation of the eigenvalues of a rather complex 
matrix (McGhee, 1963). As a practical matter, it is generally more effective to investigate 
convergence by means of a simulation study. Moreover, when this is done, not only 
convergence, but also the effect of sensor noise on estimation accuracy can be examined. 
With this in mind, a computer simulation of the static estimation problem was written in 
ANSII Common Lisp (Appendix C). In this simulation, computer generated gaussian 
white noise samples were added to each of the six components of a computed 
measurement vector obtained by using Eq. (3). The noise standard deviation, nσ , was the 
same for all components of this vector, and each six dimensional noise sample was 
independently generated for every simulated measurement vector. The true orientation 
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quaternion, , needed by Eq. (3) was also randomly generated, by using independent 
uniformly distributed random variables in the interval [-1 1] for each of the four 
components of this quaternion, and then normalizing the results to a unit quaternion. 

trueq

Following the generation of artificial data using the above procedure, in the 
simulation study, Eq. (22)-(24) were iteratively applied a specified number of times. The 
starting value for each such cycle of iterations was obtained by adding to each component 
of the true orientation quaternion a random number uniformly distributed in the interval 
[-0.1, 0.1], and then normalizing this result to obtain a unit quaternion. Table 1 shows a 
typical result obtained in such a trial in the case of perfect data ( 0nσ = ). As can be seen 
from this table, in these circumstances, almost all of the error in estimating the true value 
for q  is removed in the first cycle of Gauss-Newton iteration. 

Estimated Orientation Quaternion Components 
 

0q  1q  2q  3q  
Initial Estimate -0.19242062 0.5861363 -0.52690697 -0.58462614 

Iteration 1 -0.16005535 0.64316887 -0.53970546 -0.5190704 
Iteration 2 -0.15987878 0.6468387 -0.5358498 -0.518559 
Iteration 3 -0.15988407 0.6468314 -0.5358464 -0.51857 

True -0.15988402 0.6468314 -0.53584635 -0.51856995 

Table 1: Typical Sequence of Values for Orientation Quaternion Estimate using 
Gauss-Newton Iteration with Noiseless Data 

To evaluate the effects of measurement noise on the convergence and accuracy of 
Gauss-Newton iteration, the experiment described above was repeated with artificial 
measurement data to which gaussian noise with a standard deviation of 0.01 was added to 
each of the six data components followed by normalization of both the simulated noisy 
accelerometer data and magnetometer data. Typical results are shown in Table 2 below. 
As can be seen, even though the estimation sequence still converges very quickly, the 
final result differs from the true value for q  by a small amount, on the same order as the 
error in the measurement vector. This is, of course, to be expected since part of the 
significance of the results of Table 1 is that Gauss-Newton linearization of the 
dependence of estimation error on measurement error (as represented by  
Eq. (7)) is quite accurate. 

Estimated Orientation Quaternion Components 
 

0q  1q  2q  3q  
Initial Estimate 0.12020314 0.2773305 0.92554724 -0.22803806 

Iteration 1 0.13213184 0.34180763 0.9060598 -0.21157604 
Iteration 2 0.13303357 0.34058997 0.90590346 -0.21363427 
Iteration 3 0.13302392 0.34063232 0.90588933 -0.21363264 

True 0.13386706 0.33879966 0.9073919 -0.20960511 

Table 2: Typical Sequence of Values for Orientation Quaternion Estimate using 
Gauss-Newton Iteration with Noise Standard Deviation Equal to 0.01 on Each 
Component of Accelerometer and Magnetometer Output 

 While the above Table 1 and Table 2 give a general idea of the convergence and 
accuracy properties of Gauss-Newton iteration, in order to deal with a much larger 
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sample, a series of simulation trials was conducted in which each experiment was 
repeated one thousand times. For each such trial, the root mean square (RMS) quaternion 
estimation error was computed and recorded for each successive cycle of Gauss-Newton 
iteration. More specifically, each trial produced a series of estimated values such as those 
recorded in Table 1 and Table 2. For each estimate in such a series, the squared error 
function is simply the square of the length of the difference between the true and the 
estimated orientation quaternion. The RMS error is then just the square root of the 
average of the squared error function (at each level of iteration) over the 1000 trials for 
each noise level selected. Table 3 summarizes typical results for such an experiment. 

RMS Error in Estimated Quaternion Noise 
Level Initial  Iteration1 Iteration 2 Iteration 3 Iteration 4 
0.00 0.10071685 0.0051641823 1.7919934e-5 8.850226e-8 8.274388e-8 
0.01 0.098774455 0.015352701 0.014763316 0.014770619 0.014770887 
0.03 0.09863774 0.04265576 0.043464825 0.043680053 0.043695707 
0.10 0.100237824 0.13531718 0.13646685 0.14414792 0.14421917 

Table 3: RMS Error in Estimated Orientation Quaternion Averaged Over 1000 
Trials 

In this table, “noise level” refers to the standard deviation of the gaussian noise added to 
each component of the simulated measurement vector. The true value for the orientation 
vector was randomly generated using the same technique as in Table 1 and Table 2 
above. 
 There are several important conclusions to be drawn from the results presented in 
Table 3. First of all, for noiseless data, there is no significant improvement in estimation 
accuracy after three cycles of Gauss-Newton iteration. For all other levels of noise 
considered, one cycle of Gauss-Newton iteration appears to be sufficient. These results 
show that the linearization of Eq. (7) is very accurate, especially for data containing 
realistic amounts of measurement noise. Closer examination of the entries in this table 
reveals the apparently anomalous result that, for 0.10nσ = , RMS estimation error 
actually increases on each iteration cycle. However, this is an artifact resulting from the 
fact that, as described above, the amount of artificially induced starting error is the same 
for all measurement noise levels, and for high noise levels is less than that resulting from 
the actual minimization of the squared error criterion function of Eq. (5). Finally, there is 
the quantitative result that, for all levels of gaussian measurement noise considered, the 
RMS value of the length of the difference between the true and estimated orientation 
quaternion is about 45% more than the per component measurement error. This provides 
a useful “rule of thumb” for relating sensor noise to orientation estimation errors, and is 
further evidence of the accuracy of the linearization accomplished by Gauss-Newton 
iteration.  

While all of the above results were obtained by recalculating the X  matrix on every 
cycle of iteration, further experiments have shown that this is not needed to obtain the 
results shown in Table 3. Moreover, it has also been found that the X  matrix of Eq. (24) 
can be computed directly from the components of the noisy measurement vector, , and 
good convergence still results. These experimental findings are without theoretical 
justification at present. 

0y
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7. Dynamic Estimation 
All of the above discussion relates to the static estimation problem in which only a 

single measurement vector, , is available. More typically, in real orientation estimation 
problems, a time sequence of measurement vectors will be available, leading to an 
orientation tracking problem in which each new measurement vector is used to obtain a 
new orientation estimate. In the special case that it is known a priori that the object being 
tracked is in fact stationary, one approach to tracking would be to simply average all data 
vectors up to the last one, and then estimate the orientation quaternion from this average 
using the methods described above. However, a more interesting and challenging 
problem is to suppose that the object being tracked is moving in an unknown way, and 
that some type of filter is used to track such motion while discriminating against 
measurement noise and the confounding effect of linear acceleration on the measurement 
of gravity by an accelerometer triad. One form for such a filter is shown in Figure 1 
below. 

0y

 

+

+

+

εq

fullq∆

)ˆ(qε

q

Tbbbhhh )( 321321
* *ˆ ˆ ˆ ˆ( , )Tq m q q n q⊗ ⊗ ⊗ ⊗

1 2 3
1 ˆ (0 )
2

q ω ω ω⊗ ∫

0y )ˆ(qy

TT XXX 1][ −

)( 321 hhh
Accelerometers 

1 2 3( )ω ω ω

Angular-rate 
Sensors 

)( 321 bbb
Magnetometers 

k

-

q̂
q
q

( )ˆ 0,q r⊗

r

qq

 

Figure 1: Quaternion-Based Orientation Estimation Filter 
Examination of Figure 1 shows the incorporation of a feedback loop employing 

reduced order Gauss-Newton iteration. Specifically, on this figure, fullq∆  is just the result 
of one iteration of Eq. (21). Ignoring for the moment the input from the angular rate 
sensors indicated on this diagram, it can be seen that fullq∆  is multiplied by a scalar gain 
factor, , integrated, normalized, and the result then used to iterate again on Eq. (21). 
This process is the same as described in the discussion relating to Tables 1 and 2 above 
with two important differences as follows. First of all, in static estimation, the 

k
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measurement vector  is treated as a constant, while in orientation tracking, a new value 
for  is available on every cycle of iteration. Secondly, the functioning of the integrator 
together with the gain factor multiplication has yet to be explained. This discussion 
follows. 

0y

0y

full

trueq

If the X  matrix were constant (which it is not in realistic tracking problems), then the 
feedback loop of Figure 1 could be analyzed in continuous time using the linearizing 
assumption that  represents the true error in . Such an analysis reveals that this 
feedback loop functions as a low pass filter, with time constant equal to 

q∆ q̂
1  (Bachmann 

et al., 1999). The function of this filter is to discriminate against the effects of sensor 
noise and linear acceleration in circumstances when such signals are of relatively high 
frequency compared to actual object rotational motion (Bachmann et al., 1999). To gain 
some understanding of this idea, consider the (idealized) special case in which successive 
values of  do not change (stationary object, noiseless sensors). Then, ignoring the 
nonlinear normalization operation, and assuming 

k

0y

fulq l∆  is exact, from Figure 1, 

  (25) ˆ fullq k q= ∆

If  is the actual true value for the orientation quaternion associated with , then 
under the above assumptions, 

0y

 ˆfull trueq q q∆ = −  (26) 

Thus, combining these two equations, 
  (27) ˆ ˆ trueq k q k q+ =

By any of a number of well known methods (Kuo, 1995), the solution to this differential 
equation is easily shown to lead to the result 

 ( ) ( )0 kt
full fullq t q e−∆ = ∆  (28) 

That is, in this special case, the error in  exponentially declines to zero. q̂
In fact, the above result is just a limiting value as the discrete time filter loop cycle 

time, , approaches zero and is included here only to show how continuous time 
analysis can give some insight into the functioning of discrete time (digital computer) 
feedback systems. In reality, in digital systems, the integration of Figure 1 is most often 
replaced by a simple summation. That is, after n cycles of iteration, 

t∆

 ( ) ( ) ( )( )
1

0
n

i
q n t q q i t t

=

 ∆ = + ∆ ∆ ∑  (29) 

Evidently, for each step in this summation, under the simplifying assumptions of the 
above analysis,  is incremented by an amount q

 fullq k t q∆ = ∆ ∆  (30) 
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This relationship is key to understanding the functioning of an implementation of Figure 
1 on a digital computer utilizing a fixed cycle time, t∆ . Specifically, this result shows 
that if , then the entire Gauss-Newton correction step will be performed on just 
one iteration cycle rather than in the exponential fashion of a continuous time filter (as 
determined by Eq. (28)). For 

1k t∆ =

0 1k t< < ∆ , on the first cycle, the fraction of fullq∆  

corrected is , so the remaining error is k ∆t ( )1 fullk t− ∆ q∆ . This action will be repeated 
on the next cycle so that after  cycles n

  (31)  ( ) ( ) ( )( )0 1 n
true fullq n q q n q k t∆ = − = ∆ − ∆

This analysis also applies to larger values of , from which Eq. (31) reveals that for such 
values the error in  oscillates in sign (that is, there is a degree of overcorrection in 
tracking) which diverges for . Finally, since Eq. (31) uses just the first two terms 
in the Taylor series for , as is well known in linear feedback control theory (Kuo, 
1995), it follows that the results of this equation converge to Eq. (28) as ∆  approaches 
zero. 

k
q

2k t∆ >
tke− ∆

t

The purpose of the above analysis is to give some insight into the functioning of one 
approach to dynamic estimation of the orientation quaternion of a rigid body, and also to 
expose some of the basic effects of time sampling on discrete time filters. In reality, this 
is a very deep subject with a well developed theory that goes far beyond the scope of this 
paper (Kuo, 1995). Perhaps the main point to be made in conclusion to this section of this 
paper is that numerous simulation and real time experiments have shown that the 
linearization provided by Gauss-Newton iteration is so powerful that all of the above 
analysis accurately describes the time behavior of the nonlinear filter shown in Figure 1 
(Bachmann, 2000; Bachmann et al. 1999). The next section of this paper explains the 
benefit of including rate sensor inputs as shown on this figure, and also briefly discusses 
“optimal” attitude estimation filters for cases in which full statistical models are available 
both for object motion and for measurement errors. 

8. Complementary Filtering and Optimal Estimation 
Turning again to Figure 1, suppose 0k = . In this situation, evidently q . Thus, in 

the (unrealistic) case that rate sensor data is perfect, then providing the integrator in this 
figure is correctly initialized it follows that, q q q

q=

ˆ true= = . With this approach, the time lag 
associated with estimation of orientation from accelerometer and magnetometer data (as 
discussed in the above Section 7 of this paper) is no longer present. While this method 
can in fact be used for some period of time (depending on the quality of the angular rate 
sensors), real angular rate data will be corrupted by many sources of inaccuracy including 
random noise, scale factor and bias errors, nonlinearities, etc. This being the case, every 
practical orientation tracker of the form of Figure 1 must use k . Such a filter is called 
a complementary filter because the integration of angular rate data, which provides an 
accurate response to rapid changes in orientation, is complemented by the long term 
accuracy provided by the low pass filtering of accelerometer and magnetometer derived 
estimates of orientation using Gauss-Newton linearization  (upper half of Figure 1). 

0>
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While the above discussion is entirely qualitative, under assumptions of continuous 
time integration, perfect linearization by the Gauss-Newton procedure, and exact 
measurement data, it can be shown that the complementary filter of Figure 1 provides an 
errorless value for  for all non-negative values of  (Bachmann, 2000; Bachman et al., 
1999). That is, for , the “quickening” of the filter response by the use of angular 
rate information is exactly complementary to the “drift correction” provided by the use of 
accelerometer and magnetometer data. However, based on the analysis of the above 
Section 7 of this paper, in a real digital implementation of this system, a value for  in 
the range 

q̂
k

k
0≥

k
0  must be used. While considerable theory exists to provide a basis 

for choosing a good value for k  in a given set of circumstances (Brown and Hwang, 
1997), such theory requires accurate knowledge of the statistical properties of both the 
measurement and maneuver processes associated with a given rigid body. 
Complementary filters are typically used when such statistics are lacking, so the usual 
approach to selecting a value for  is to “tweak” it in an experimental setting until 
satisfactory performance is achieved (Bachmann, 2000). One useful “rule of thumb” to 
guide in the selection of  is that for sinusoidal motion of a rigid body, the greatest 
weight is placed on angular rate data for frequencies higher than the crossover frequency 
(in Hz) given by (Brown and Hwang, 1997; Bachmann 2000): 

2 t∆k< <

k

k

 
2c
kf
π

=  (32) 

Of course, below this frequency, greater weight is placed on orientation estimates 
obtained from accelerometer and magnetometer measurements. 

In the (rare) special circumstance that all statistical properties of both object motion 
(maneuver process) and measurement noise are known, a well developed theory called  
“Kalman Filtering” exists for “optimal state estimation” for linear systems (Brown and 
Hwang, 1997). This theory automatically allows for greater weighting of reliable data in 
comparison to less reliable data in determining state estimates. For the nonlinear 
orientation quaternion estimation problem considered in this paper, an extended form of 
such filtering is possible through local linearization. Such filtering can be based on either 
reduced order (3x3) Gauss-Newton iteration (Gebre-Egziabher, 2000) or on a full (4x4) 
iteration using unit quaternions (Marins et al., 2001). Experimental results published in 
these two references show good convergence of the extended filters. Also, as in the 
preceding parts of this paper, such filters can be constructed either with or without 
angular rate sensors. The advantages of using such sensors are the same as described 
above for complementary filters. The most serious drawback to the use of “optimal” 
filters is that they are highly “tuned” to the assumed problem statistics and are not subject 
to “eyeball” adjustment in an experimental situation as is the case with the single 
parameter k  involved in the complementary filter of Figure 1. Nevertheless, the powerful 
linearization capabilities of  Gauss-Newton linearization as demonstrated by Table 3 in 
this paper means that Kalman filtering represents an approach to orientation estimation 
which should be seriously investigated as an alternative to complementary filtering when 
process statistics are stable and known to sufficient accuracy. 
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9. Summary, Conclusions, and Further Research  
This paper attempts to illuminate a variety of alternative approaches to the 

singularity free estimation of rigid body orientation from measurements of the Earth’s 
gravitational and magnetic fields by sensors attached to the body. Toward this end, a 
quaternion based theory is developed and validated by simulation studies. The results 
obtained include reduction of problem dimensionality by the use of incremental rotation 
quaternions having only three variable components rather than the four variables 
associated with an arbitrary quaternion. For tracking problems, in which orientation 
changes over time, since Gauss-Newton linearization of the orientation estimation 
problem introduces a time lag, “quickening” of the tracking filter through use of angular 
rate information is also described. An alternative view of this modification is that 
magnetometer and accelerometer data provide a “drift correction” for the integration of 
angular rate data to obtain an orientation quaternion. 

Perhaps the main result of this paper, supported by simulation studies, is that Gauss-
Newton iteration provides a surprisingly accurate linearization of the orientation 
quaternion estimation problem. This enables both complementary filtering and Kalman 
filtering approaches to singularity free orientation tracking using a nine-axis sensor 
package elsewhere called a MARG (Magnetic field, Angular Rate, Gravity) sensor 
(Bachmann et al., 2001). For static problems or tracking problems in which an output 
time delay due to low pass filtering is not objectionable, rate sensors can be eliminated 
(Foxlin, 1996; Bachmann, 2001) 

With advances in sensor technology, especially relative to possible automotive 
applications (Teegarden et al., 1998), smaller and less expensive MARG sensors are 
gradually becoming available. The smallest nine axis system known to the authors is 
about 2 cubic inches in volume, and has been used successfully in human limb tracking 
experiments for virtual reality applications (Bachmann et al, 2001). Smaller packages are 
under development as part of this ongoing project. A patent has been filed relative to the 
hardware and software used in this application of the theory of this paper. 

It is the authors’ view that the theory and algorithms we have presented in this paper 
enable a very wide range of orientation tracking systems to be realized in a cost effective 
and entirely practical way. The software simplification enabled by the results of 
Appendix A is huge in comparison to methods based on Euler angles, and should enable 
both cost reduction and performance improvement in electronic compasses and other 
orientation measuring systems using embedded microprocessors. We hope that our work 
will encourage the development of such systems. 

We do not consider that the theory we have presented is complete. In particular, 
when only partial information concerning process or noise statistics is available, it should 
be possible to use some form of “weighted error” criterion function in a complementary 
filter so that less emphasis would be placed on less reliable measurements. While some 
work has been started in this direction (Bachmann et al., 2001), much remains to be done. 
Likewise, so far as the authors know, there are no simulation studies relating to the 
degradation of Kalman filter performance in attitude estimation applications when 
measurement error or process statistical models are incorrect. The performance of such 
“mistuned” optimal filters relative to complementary filters with one or more adjustable 
parameters is important to all applications of Gauss-Newton linearization, and is a subject 
we intend to pursue in our human body tracking research.  
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As a final remark, we note that all of the present paper is devoted to orientation 
tracking only. A complete articulated body tracking system must also determine the 
location of one reference point on one of the rigid bodies comprising such a system 
(Bachmann et al, 2001). Differential GPS may be satisfactory for some outdoor 
applications (for example, tracking motion of individual human beings in virtual reality 
systems), but indoor solutions are still needed (Hightower & Borriello, 2001; Feng, 
1996). Clearly there are many reasons for wanting to track the location of individuals and 
objects inside buildings, and we believe that this paper provides approaches to orientation 
tracking which will work well with such future systems to provide the posture data 
needed to complete full tracking of articulated rigid body models of human beings, and 
possibly some types of robotic systems, for remote computer display. 
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Appendix A: Derivation of Simplified X Matrix 
 

It is well known that rotation of 3-vectors by matrix multiplication offers an 
alternative to rotation by quaternion multiplication. Specifically, referring to Eq. (1) an 
equivalent relation is: 

  (A-1) ( ) ( ) ( )1 2 3
TT

gy q y y y R q m= =

where 
  (A-2) (0 0 1 Tm = )

)

)

and, providing  is a unit quaternion, (Cooke et al., 1992; Gebre-Egziabher et al., 2000) q

 ( )
( ) ( ) (

( ) ( ) (

( ) ( ) ( )

2 2
2 3 1 2 3 0 1 3 2 0

2 2
1 2 3 0 1 3 2 3 0 1

2 2
1 3 3 0 2 3 1 0 1 2

1 2 2 2

2 1 2 2

2 2 1 2

q q q q q q q q q q

R q q q q q q q q q q q

q q q q q q q q q q

 − + + −
 
 = − − + + 
 + − −  +

 (A-3) 

If  is an “incremental rotation quaternion”, as defined by Eq. (19), then, as rq  
approaches the zero vector, the matrix R  can be linearized to the skew symmetric matrix 
(Gebre-Egziabher et al., 2000): 

 ( )
3 2

3

2 1

1 2 2
2 1 2

2 2 1

r r

1R r r r
r r

δ

− 
 = − 
 − 

 (A-4) 

Evidently, if  is defined as in Eq. (20), then, for small ˆnewq r :  
 ( ) ( ) ( )gy q q R r y qδ+ ∆ =  (A-5) g

In component form, this means that: 
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 ( ) ( ) ( ) ( )1 1 3 2 2 32 2y q q y q r y q r y q+ ∆ = + −  (A-6) 

 ( ) ( ) ( ) ( )2 2 3 1 12 2y q q y q r y q r y q+ ∆ = − + 3  (A-7) 

 ( ) ( ) ( ) ( )3 3 2 1 12 2y q q y q r y q r y q+ ∆ = + − 2  (A-8) 

Thus, 

 1 1 1
3

1 2 3

0, 2 , 2y y yy
r r r

∂ ∂ ∂
= = − =

∂ ∂ ∂ 2y  (A-9) 

or, equivalently:   

 [1
1 0 2 2y ]3 2X y y

r
∂

= = −
∂

 (A-10) 

Similarly, 

 [2
2 32 0 2y ]1X y

r
y∂

= = −
∂

 (A-11) 

and 

 [3
3 22 2yX y

r
]1 0y∂

= = −
∂

 (A-12) 

 
Clearly, the same line of reasoning applies to ( )ny q  as given by Eq. (2) with the result 
that: 

 

3 2

3 1

2 1

6 5

6 4

5 4

0 2 2
2 0 2
2 2 0
0 2 2

2 0 2
2 2 0

y y
y y
y y

X
y y

y y
y y

− 
 − 
 −

=  − 
 −
 
−  

 (A-13) 

Appendix B: Incremental Rotation Quaternions 

It is well known that a general unit quaternion can be written in the form (Kuipers 
1999) 

 cos( / 2) sin( / 2)q uθ θ= +  (B-1) 

where  is a unit vector specifying an axis of rotation and u θ  is the angle of rotation 
about that axis. Using such a quaternion, if  is any three-dimensional vector (quaternion v
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with zero real part) expressed in a fixed reference (or “world”) coordinate system, then 
the rotation of  into a new vector, v v′ , is accomplished by 

1−

 1v qvq−′ =  (B-2) 

In this expression,  is also expressed in the fixed reference coordinate system and from 
(Kuipers 1999), for any non-zero quaternion 

v′
p , regardless of its magnitude, the 

quaternion inverse is defined by 

 
( ) *

0 1 2 31
2

p p p p
2

pp
p p

− − − −
= =  (B-3) 

It is important to recognize that Eq. (B-2) is valid even for quaternions that are not of 
unit magnitude. To see that this is so, suppose α  is any real number other than zero, and 
that q  is a unit quaternion as defined by Eq. (B-1). Now let 

 p qα=  (B-4) 

and let v be redefined as ′
 1v pvp−′ =  (B-5) 

Evidently, from Eq. (B-3) 

 
* *

2 2

p q qp
p

α
α α

−

= = =  (B-6) 
1

so Eq. (B-5) becomes 

 
1

1qv qv qvqα
α

−
− 

′ = = 
 

 (B-7) 

This is the same result as Eq. (B-2), which establishes the fact that any non-zero 
quaternion can be multiplied by any non-zero scalar without changing the rotation 
accomplished by the given quaternion. 

Granted the result of Eq. (B-7), suppose  is a unit quaternion as defined by Eq. 
(B-1), and suppose further that the rotation angle, 

q
θ , is limited to the range:  π θ π<− < . 

This limitation defines the term incremental rotation quaternion used elsewhere in this 
paper. Obviously, such quaternions are not capable of accomplishing arbitrary rotations 
by a single application of Eq. (B-2). However, it is equally clear that a succession of 
incremental rotations can realize any rotation, without any limitation on the range of θ . It 
is for this reason that the term “incremental” is introduced here to characterize such 
quaternions.  
 From the above definition, for an incremental rotation quaternion, evidently 

cos 0
2
θ  > 
 

. Thus, any such unit quaternion can be transformed to unit real form by 

dividing it by its real part with the result 
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( ) ( )( ) (1, tan 1,2cos 2

q )p u θ
θ

= = = r  (B-8) 

The importance of this new “canonical form” (applicable only to incremental rotation 
quaternions) is that it has only three variable components rather than the four of a unit 
quaternion, and therefore reduces the order of the Gauss-Newton iteration problem as 
explained in Section 5 of this paper. Fortuitously, and unexpectedly, another advantage of 
using incremental rotation quaternions in Gauss-Newton iteration is that the X  matrix 
used in this method, and derived in Appendix A above, is thereby greatly simplified. In 
this regard, it is important to realize that the limitation of rotation angles associated with 
unit real quaternions is of no consequence in Gauss-Newton iteration since multiple 
iterations allow any quaternion to be achieved by this estimation process. 
As a final remark, the derivation of the X  matrix in Appendix A assumes that  is a unit 
quaternion. Thus, in Figure 1 the results of Eq. (20) are normalized to obtain a unit 
quaternion after every iteration step. This means that there are no limitations on the 
magnitude of  when unit real quaternions are used for iteration in the indicated way. 

q̂

r
 
Appendix C: LISP Simulation Code 
 
simplified-gauss-newton iteration.cl 
 
;This code written in ANSII Common Lisp by Prof. Robert B. McGhee (mcghee@ 
;cs.nps.navy.mil) at the Naval Postgraduate School, Monterey, CA93940. 
;Date of latest update: 14 September 01. 
 
(load "c:\\my documents\\papers\\lisp code for gn filter\\quaternion-functions") 
 
(defvar b (list 0 (- (cos (deg-to-rad 60))) 0 (sin (deg-to-rad 60)))) 
 
(defun 3-q-prod (q1 q2 q3) 
 (quaternion-product q1 (quaternion-product q2 q3))) 
 
(defun X-matrix (q) 
  (let* ((2y (scalar-multiply 2 (computed-measurement q))) (2u1 (first 2y))  
         (2u2 (second 2y)) (2u3 (third 2y)) (2v1 (fourth 2y)) (2v2 (fifth 2y)) 
          (2v3 (sixth 2y)) (Xcol1 (list 0 2u3 (- 2u2) 0 2v3 (- 2v2))) 
          (Xcol2 (list (- 2u3) 0 2u1 (- 2v3) 0 2v1)) 
          (Xcol3 (list 2u2 (- 2u1) 0 2v2 (- 2v1) 0))) 
        (transpose (list Xcol1 Xcol2 Xcol3)))) 
     
(defun computed-measurement (q) 
  (let* ((q-inv (quaternion-inverse q))   
         (q1 (3-q-prod q-inv k q)) (q2 (3-q-prod q-inv b q))) 
        (append (rest q1) (rest q2)))) 
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(defun normalize-measurement (y) 
  (append (normalize-vector (firstn 3 y)) (normalize-vector (nthcdr 3 y)))) 
 
(defun random-start (q-true max-start-error) 
  (normalize (vector-add q-true (scalar-multiply max-start-error  
                                   (list (- (random 2.0) 1.0) (- (random 2.0) 1.0) 
                                         (- (random 2.0) 1.0) (- (random 2.0) 1.0)))))) 
 
(defun noise-vector (standard-deviation) 
  (do* ((i 5 (1- i)) 
        (noise (list (gaussian-noise standard-deviation)) 
               (cons (gaussian-noise standard-deviation) noise))) 
       ((zerop i) noise))) 
 
(defun gaussian-noise (standard-deviation) 
  (do* ((i 11 (1- i)) 
        (noise (- (random 1.0) .5) (+ (- (random 1.0) .5) noise))) 
       ((zerop i) (* standard-deviation noise)))) 
          
(defun noisy-measurement (q standard-deviation) 
  (normalize-measurement (vector-add (computed-measurement q) 
                                     (noise-vector standard-deviation)))) 
                 
(defun rotation-vector (measurement-vector estimated-q) 
  (let* ((q estimated-q) (y0 measurement-vector) (y (computed-measurement q)) 
         (error (vector-subtract y0 y)) (X (X-matrix q)) 
         (X-trans (transpose X))  
         (M (matrix-inverse (matrix-multiply X-trans X))) 
         (N (matrix-multiply M X-trans))) 
        (post-multiply N error))) 
 
(defun best-q-sequence (q-true max-start-error sigma-noise number-of-GN-
cycles) 
  (do* ((measurement (noisy-measurement q-true sigma-noise)) 
        (q-start (random-start q-true max-start-error)) 
        (q-cap q-start) 
        (count (1- number-of-GN-cycles)(1- count)) 
        (r (rotation-vector measurement q-cap) (rotation-vector measurement q-
cap)) 
        (delta-q (quaternion-product q-cap (cons 0 r)) 
                 (quaternion-product q-cap (cons 0 r))) 
        (q-cap (normalize (vector-add q-cap delta-q))  
               (normalize (vector-add q-cap delta-q))) 
        (estimation-sequence (list q-cap q-start) (cons q-cap estimation-sequence))) 
       ((zerop count) (cons q-true estimation-sequence)))) 
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(defun random-q () (normalize (list (- (random 2.0) 1) (- (random 2.0) 1) 
                                    (- (random 2.0) 1) (- (random 2.0) 1)))) 
 
(defun error-sequence (q-true max-start-error sigma-noise number-of-cycles) 
  (do* ((q-seq (best-q-sequence q-true max-start-error sigma-noise number-of-
cycles)) 
        (q-true (first q-seq)) 
        (q-cap-list (rest q-seq) (rest q-cap-list)) 
        (error-list (list (vector-subtract (first q-cap-list) q-true)) 
                    (cons (vector-subtract (first q-cap-list) q-true) error-list))) 
       ((null (rest q-cap-list))  error-list))) 
 
(defun list-of-error-sequences (max-start-error sigma-noise GN-depth 
                                                number-of-sequences) 
  (do* ((n (1- number-of-sequences) (1- n)) 
        (q-true (random-q) (random-q)) 
        (sequence (list (error-sequence q-true max-start-error sigma-noise GN-
depth)) 
                  (cons (error-sequence q-true max-start-error sigma-noise GN-depth) 
                        sequence))) 
       ((zerop n) sequence))) 
 
 
(defun rms-error-sequence (max-start-error sigma-noise GN-depth number-of-
sequences) 
  (do* ((mse max-start-error) (sgmn sigma-noise) (dpth GN-depth) 
        (nseq number-of-sequences) 
        (count (1- nseq) (1- count)) 
        (error-sequences-list (list-of-error-sequences mse sgmn dpth nseq) 
                              (rest error-sequences-list)) 
        (error-sequence (first error-sequences-list) (first error-sequences-list)) 
        (sum-squared-error-sequence (squared-error-sequence error-sequence) 
                                    (vector-add sum-squared-error-sequence  
                                             (squared-error-sequence error-sequence)))) 
       ((zerop count)  
        (list-sqrt (scalar-multiply (/ 1 nseq) sum-squared-error-sequence))))) 
 
(defun squared-length (vector) (dot-product vector vector)) 
 
(defun list-sqrt (list) 
  (if list (cons (sqrt (first list)) (list-sqrt (rest list))))) 
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(defun squared-error-sequence (error-sequence) 
  (do* ((sequence error-sequence (rest sequence)) 
        (error-quaternion (first sequence) (first sequence)) 
        (squared-sequence (list (squared-length error-quaternion)) 
                          (cons (squared-length error-quaternion) squared-sequence))) 
       ((null (rest sequence)) (reverse squared-sequence)))) 
 
(defun t0 () (reverse (best-q-sequence (random-q) 0.1 0.0 3))) 
 
(defun t1 () (reverse (best-q-sequence (random-q) 0.1 0.01 3))) 
     
(defun t2 () (rms-error-sequence 0.1 0.0 4 1000)) 
 
(defun t3 () (rms-error-sequence 0.1 0.01 4 1000)) 
 
(defun t4 () (rms-error-sequence 0.1 0.03 4 1000)) 
 
(defun t5 () (rms-error-sequence 0.1 0.1 4 1000)) 
 
quaternion-functions.cl 
 
;This code written in ANSI Common Lisp (Allegro CL 5.0) by Prof. Robert 
;McGhee at the Naval Postgraduate School, Monterey, CA93943. Contact:  
;mcghee@cs.nps.navy.mil. Date of last modification: May 9, 2000. 
 
(load "c:\\my documents\\papers\\lisp code for gn filter\\robot-kinematics") 
 
(defun quaternion-product (Q Q1) 
  (let ((w (first Q)) (x (second Q)) (y (third Q)) (z (fourth Q))  
        (w1 (first Q1)) (x1 (second Q1)) (y1 (third Q1)) (z1 (fourth Q1))) 
       (list (- (* w w1) (* x x1) (* y y1) (* z z1)) 
             (+ (* x w1) (* w x1) (- (* z y1)) (* y z1)) 
             (+ (* y w1) (* z x1) (* w y1) (- (* x z1))) 
             (+ (* z w1) (- (* y x1)) (* x y1) (* w z1))))) 
 
(defun quaternion-conjugate (Q) 
  (list (first Q) (- (second Q)) (- (third Q)) (- (fourth Q)))) 
 
(defun quaternion-inverse (Q) 
  (scalar-multiply (/ 1 (dot-product Q Q)) (quaternion-conjugate Q))) 
 
(defun rotate-vector (quaternion vector) ;Vector is quaternion with leading 
  (let* ((q quaternion) (v vector)       ;element zero. 
         (q-inv (quaternion-inverse q))) 
        (quaternion-product q (quaternion-product v q-inv)))) 
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(defun quaternion-i (angle) 
  (list (cos (* .5 angle)) (sin (* .5 angle)) 0 0)) 
 
(defun quaternion-j (angle) 
  (list (cos (* .5 angle)) 0 (sin (* .5 angle)) 0)) 
 
(defun quaternion-k (angle) 
  (list (cos (* .5 angle)) 0 0 (sin (* .5 angle)))) 
 
(defun euler-to-quaternion (azimuth elevation roll) 
  (quaternion-product (quaternion-k azimuth) 
                      (quaternion-product (quaternion-j elevation) 
                                          (quaternion-i roll)))) 
 
(defun unit-quaternion (angle axis) 
  (cons (cos angle) (scalar-multiply (sin angle) axis))) 
 
(defun quaternion-rotation (unit-quaternion) 
  (transpose (list (rest (rotate-vector unit-quaternion '(0 1 0 0))) 
                   (rest (rotate-vector unit-quaternion '(0 0 1 0))) 
                   (rest (rotate-vector unit-quaternion '(0 0 0 1)))))) 
 
(defun quaternion-derivative (quaternion pqr) 
  (scalar-multiply .5 (quaternion-product quaternion (cons 0 pqr)))) 
 
(defun quaternion-homogeneous-transform (quaternion position) 
  (let* ((matrix (quaternion-rotation quaternion))) 
        (append (concat-matrix matrix (transpose (list position))) 
                (list (list 0 0 0 1))))) 
 
(defun normalize (quaternion) 
  (scalar-multiply (/ 1 (vector-magnitude quaternion)) quaternion)) 
 
(defvar q1 (list (sqrt .5) (sqrt .5) 0 0)) 
 
(defvar q2 (list (sqrt .5) 0 (sqrt .5) 0)) 
 
(defvar h '(1 0 0 0)) 
 
(defvar i '(0 1 0 0)) 
 
(defvar j '(0 0 1 0)) 
 
(defvar k '(0 0 0 1)) 
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robot-kinematics.cl 
 
;This code written in ANSI Common Lisp (Allegro CL 5.0) by Prof. Robert 
;McGhee at the Naval Postgraduate School, Monterey, CA93943. Contact:  
;mcghee@cs.nps.navy.mil. Date of last modification: June 4, 2000. 
 
(defun transpose (matrix)           ;A matrix is a list of row vectors. 
  (cond ((null (cdr matrix)) (mapcar 'list (car matrix))) 
        (t (mapcar 'cons (car matrix) (transpose (cdr matrix)))))) 
 
(defun dot-product (vector-1 vector-2);A vector is a list of numerical atoms.  
  (apply '+ (mapcar '* vector-1 vector-2)))      
 
(defun cross-product (vector-1 vector-2) 
  (let ((x1 (first vector-1)) (y1 (second vector-1)) (z1 (third vector-1)) 
        (x2 (first vector-2)) (y2 (second vector-2)) (z2 (third vector-2))) 
       (list (- (* y1 z2) (* y2 z1)) (- (* x2 z1) (* x1 z2))  
             (- (* x1 y2) (* x2 y1))))) 
 
(defun vector-magnitude (vector) (sqrt (dot-product vector vector))) 
 
(defun normalize-vector (vector)  
  (scalar-multiply (/ (vector-magnitude vector)) vector))  
 
(defun post-multiply (matrix vector)  
  (cond ((null (rest matrix)) (list (dot-product (first matrix) vector))) 
        (t (cons (dot-product (first matrix) vector) 
                 (post-multiply (rest matrix) vector))))) 
 
(defun pre-multiply (vector matrix) 
  (post-multiply (transpose matrix) vector)) 
 
(defun 3D-postmultiply (3D-array vector) 
  (if (null (rest 3D-array)) (list (post-multiply (first 3D-array) vector)) 
      (cons (post-multiply (first 3D-array) vector) 
            (3D-postmultiply (rest 3D-array) vector)))) 
 
(defun matrix-multiply (matrix1 matrix2) 
  (cond ((null (rest matrix1)) (list (pre-multiply (first matrix1) matrix2))) 
        (t (cons (pre-multiply (first matrix1) matrix2) 
                 (matrix-multiply (rest matrix1) matrix2))))) 
 
(defun chain-multiply (L)     ;L is a list of names of conformable matrices. 
  (cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L)))) 
        (t (matrix-multiply (eval (car L)) (chain-multiply (cdr L)))))) 
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(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix)) 
 
(defun row-cycle-left (row) (append (cdr row) (list (car row)))) 
 
(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix)))) 
 
(defun unit-vector (one-column length)         ;Column count starts at 1. 
  (do ((n length (1- n)) 
       (vector nil (cons (cond ((= one-column n) 1) (t 0)) vector))) 
      ((zerop n) vector))) 
 
(defun unit-matrix (size) 
  (do ((row-number size (1- row-number)) 
       (I nil (cons (unit-vector row-number size) I))) 
      ((zerop row-number) I))) 
 
(defun concat-matrix (matrix1 matrix2) 
  (if matrix1 (cons (append (first matrix1) (first matrix2)) 
                    (concat-matrix (rest matrix1) (rest matrix2))))) 
 
(defun augment (matrix) 
  (concat-matrix matrix (unit-matrix (length matrix)))) 
 
(defun normalize-row (row) (scalar-multiply (/ 1.0 (first row)) row)) 
 
(defun scalar-multiply (scalar vector) 
  (cond ((null vector) nil)  
        (t (cons (* scalar (first vector)) 
                 (scalar-multiply scalar (rest vector)))))) 
 
(defun solve-first-column (matrix)     ;Reduces first column to (1 0 ... 0). 
  (do* ((remaining-row-list matrix (rest remaining-row-list)) 
        (first-row (normalize-row (first matrix)))  
        (answer (list first-row) 
                (cons (vector-add (first remaining-row-list)   
                        (scalar-multiply (- (caar remaining-row-list)) 
                                          first-row)) answer))) 
       ((null (rest remaining-row-list)) (reverse answer)))) 
 
(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2)) 
 
(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2)) 
 
(defun matrix-subtract (matrix-1 matrix-2) 
  (mapcar #'vector-subtract matrix-1 matrix-2)) 
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(defun subtract-unit-matrix (square-matrix) 
  (matrix-subtract square-matrix (unit-matrix (length square-matrix)))) 
 
(defun sum-of-elements-squared (matrix) 
  (apply '+ (mapcar #'dot-product matrix matrix))) 
 
(defun rms-inverse-error-metric (matrix approximate-inverse-matrix) 
  (let* ((M matrix) (M-inv approximate-inverse-matrix) (n (length M)) 
         (error-matrix (subtract-unit-matrix (matrix-multiply M M-inv))) 
         (S (sum-of-elements-squared error-matrix))) 
        (/ (sqrt S) n))) 
 
(defun first-square (matrix)  ;Returns leftmost square matrix from argument. 
  (do ((size (length matrix)) 
       (remainder matrix (rest remainder)) 
       (answer nil (cons (firstn size (first remainder)) answer))) 
      ((null remainder) (reverse answer)))) 
 
(defun firstn (n list)  
  (cond ((zerop n) nil)  
         (t (cons (first list) (firstn (1- n) (rest list)))))) 
 
(defun pivot-row-firstn (n list) 
  (append (pivot-row-first (firstn n list)) (nthcdr n list)))   
 
(defun matrix-inverse (matrix) 
  (do* ((M (pivot-row-first (augment matrix)) 
           (pivot-row-firstn n (cycle-left (cycle-up M)))) 
        (n (1- (length matrix)) (1- n)) 
        (exit-flag (= 0 (caar M)) (= 0 (caar M))));Prevents division by zero. 
       ((or (minusp n) exit-flag) (if (not exit-flag) (first-square M))) 
       (setf M (solve-first-column M)))) 
 
(defun pivot-row-first (matrix)  ;This function finds row with largest first 
  (cond ((null (cdr matrix)) matrix) ;element and moves it to top of matrix. 
        (t (if (> (abs (caar matrix)) 
                  (abs (caar (pivot-row-first (cdr matrix))))) matrix 
               (append (pivot-row-first (cdr matrix))  
                       (list (car matrix))))))) 
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(defun dh-matrix (rotate twist length translate) 
  (let ((cosrotate (cos rotate)) (sinrotate (sin rotate)) 
        (costwist (cos twist)) (sintwist (sin twist))) 
       (list (list cosrotate (- (* costwist sinrotate))  
                   (* sintwist sinrotate) (* length cosrotate)) 
             (list sinrotate (* costwist cosrotate) 
                   (- (* sintwist cosrotate)) (* length sinrotate)) 
             (list 0. sintwist costwist translate) 
             (list 0. 0. 0. 1.)))) 
  
(defun homogeneous-transform (orientation position) 
  (let* ((roll (first orientation)) (elevation (second orientation)) 
         (azimuth (third orientation)) (x (first position)) 
         (y (second position)) (z (third position)) 
         (spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation)) 
         (cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll))) 
        (list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi)) 
                    (+ (* cpsi sth cphi) (* spsi sphi)) x) 
              (list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi)) 
                    (- (* spsi sth cphi) (* cpsi sphi)) y) 
              (list (- sth) (* cth sphi) (* cth cphi) z) 
              (list 0. 0. 0. 1.)))) 
 
(defun inverse-H (H)         ;H is a 4x4 homogeneous transformation matrix. 
  (let* ((minus-P (list (- (fourth (first H))) 
                        (- (fourth (second H))) 
                        (- (fourth (third H))))) 
         (inverse-R (transpose (first-square (reverse (rest (reverse H)))))) 
         (inverse-P (post-multiply inverse-R minus-P))) 
        (append (concat-matrix inverse-R (transpose (list inverse-P))) 
                (list (list 0 0 0 1))))) 
 
(defun rotation-matrix (euler-angles) 
  (let* ((roll (first euler-angles)) (elevation (second euler-angles)) 
         (azimuth (third euler-angles))  
         (spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation)) 
         (cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll))) 
        (list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi)) 
                    (+ (* cpsi sth cphi) (* spsi sphi))) 
              (list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi)) 
                    (- (* spsi sth cphi) (* cpsi sphi))) 
              (list (- sth) (* cth sphi) (* cth cphi))))) 
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(defun body-rate-to-euler-rate-matrix (euler-angles) 
  (let* ((roll (first euler-angles)) (elevation (second euler-angles)) 
         (sth (sin elevation)) (cth (cos elevation)) (tth (tan elevation)) 
         (sphi (sin roll)) (cphi (cos roll))) 
       (list (list 1 (* tth sphi) (* tth cphi)) 
             (list 0 cphi (- sphi)) 
             (list 0 (/ sphi cth) (/ cphi cth))))) 
 
(defun rad-to-deg (angle) (* 57.29577951308232 angle)) 
 
(defun deg-to-rad (angle) (* 0.017453292519943295 angle)) 
 
(defvar M '((1 1 -1) (-1 3 -1) (3 -5 -2))) 
 
(defvar N '((1 2 3) (4 5 6) (7 8 9))) 
 
(defvar L '((3 2 1) (4 5 6) (7 8 9))) 
 
(defun test1 () (matrix-inverse M)) ;Problem 2-9(a) in Kuo. 
 
(defun test2 () (matrix-inverse N)) 
 
(defun test3 () (matrix-inverse L)) 
 
(defun test4 () (matrix-multiply L (test3))) 
 
(defun test5 () (rms-inverse-error-metric L (matrix-inverse L))) 
 
(defun test6 () (rms-inverse-error-metric M (matrix-inverse M))) 
 
(defvar v '(1 2 3)) 
 
(defvar 3D-array '(((1 1 1) (2 2 2)) ((3 3 3) (4 4 4)))) 
 
(defun test () (3D-postmultiply 3D-array v)) 
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